如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.(1)若∠E=30°,求证:BC•BD=r•ED;(2)若BD=3,DE=4,求AE的长.
问题描述:
如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.
(1)若∠E=30°,求证:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的长.
答
(1)证明:取AB中点O,△ABC是Rt△,AB是斜边,O是外接圆心,连接CO,∴BO=CO,∠BCO=∠OBC,∵BC是∠DBE平分线,∴∠DBC=∠CBA,∴∠OCB=∠DBC,∴OC∥DB,(内错角相等,两直线平行),∴OCBD=CEDE,把比例式化为...