在三角形ABC中,角A,B,C,的对边分别为a,b,c 且COS(AB,AC)=1/4 求sin^2B+C/2+COS2A的值

问题描述:

在三角形ABC中,角A,B,C,的对边分别为a,b,c 且COS(AB,AC)=1/4 求sin^2B+C/2+COS2A的值

cosA=1/4
[sin(B+C)/2]^2=[1-cos(B+C)]/2=(1+cosA)/2=5/8
cos2A=2cosA^2-1=-7/8
原式=5/8-7/8=-1/4