若动点(x,y)在曲线x²/4+y²/b²=1上变化,则x²+2y的最大值为什么?

问题描述:

若动点(x,y)在曲线x²/4+y²/b²=1上变化,则x²+2y的最大值为什么?

动点P(x,Y)在曲线x²/4+y²/b²=1(b>0)上变化
即 b²x²+4y²=4b²
∴ b²(x²+2y)
= 4b²-4y²+2b²y
=-4y²+2b²y+4b²
看成关于y的函数,对称轴是y=b²/4,y∈[-b,b]
(1)b²/4≤b.即0当y=b²/4时,b²(x²+2y)有最大值-b^4/4+b^4/2+4b²=b^4/4+4b²
∴ x²+2y的最大值为b²/4+4
(2)b²/4>b,即 b>4时,
当y=b时,b²(x²+2y)有最大值-4b²+2b^4+4b²=2b^3
∴ x²+2y的最大值为2*b
你的好评是我前进的动力.
我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答题!忘说了,b>0结果是什么?最大值2b请好评呵呵,谢谢,我又有问题了,请继续为我解答吧,