BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE,垂足分别为F.G,连结FG,延长AF.AG,...

问题描述:

BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE,垂足分别为F.G,连结FG,延长AF.AG,...
BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE,垂足分别为F.G,连结FG,延长AF.AG,与直线BC相交于M.N,求说明FG=1/2(AB+BC+AC)

∵ AF⊥BD ∴ ∠AFB= ∠MFB
∵BD,平分∠ABM ∴∠M=∠FAB ∴ AB=BM AF=MF
同理 AC=CN AG=GN
∵ AF=MF AG=GN ∴FG=1/2 MN
∴ FG=1/2(AB+BC+AC)