设函数f(x)=cos(2x+π/3)+sin^2x
问题描述:
设函数f(x)=cos(2x+π/3)+sin^2x
设函数f(x)=cos(2x+π/3)+sin^2 X
设A,B,C为△ABC的三个内角,若cosB=1/3,f(c/2)=1/4,且C为锐角,求sinA
最好30分钟内给答案,
设函数f(x)=cos(2x+π/3)+sin^2 X
设A,C为△ABC的三个内角,若cosB=1/3,f(c/2)=-1/4,且C为锐角,求sinA
是写错了,麻烦帮我做下
答
f(x)=cos(2x+π/3)+sin^2 X=1/2cos2x-根号3/2sin2x+(1-cos2x)/2=1/2-根号3/2sin2x因为f(c/2)=-1/4,所以sinC=根号3/2,cosC=1/2又因为cosB=1/3,所以sinB=2倍根号2/3那么sinA=sin(π-B-C)=sin(B+C)=sinBcosC+sinCcosB=(...