f(x)=1/2sin2xsinφ+cos^xcosφ- 1/2sin(π/2+φ).(0<φ<π),且过(π/6,1/2).(1)求φ(2)若横坐标变为原先的1/2,纵坐标不变,y=g(x),求g(x)在[0,π/4]上的最值.
问题描述:
f(x)=1/2sin2xsinφ+cos^xcosφ- 1/2sin(π/2+φ).(0<φ<π),且过(π/6,1/2).(1)求φ(2)若横坐标变为原先的1/2,纵坐标不变,y=g(x),求g(x)在[0,π/4]上的最值.
答
(1)原式f(x)=1/2sin2xsinφ+cos^xcosφ-1/2cosφ
=1/2sin2xsinφ+cosφ(cos^x-1/2)
=1/2sin2xsinφ+1/2cos2xcosφ
=1/2cos(2x-φ)
因为 原式过(π/6,1/2)
代入得 1/2cos(π/3-φ)=1/2
又因为 (0<φ<π)
所以 φ =π/3
(2)由(1)知f(x)=1/2cos(2x-π/3)
若横坐标变为原先的1/2,纵坐标不变
则有y=g(x)=1/2cos(4x-π/3)
因为cosx在(-π+2kπ,2kπ)上单增 在(2kπ,π+2kπ)上单减
所以g(x)在(-π/6+kπ/2,kπ/2+π/12)单增 在(kπ/2+π/12,π/3+kπ/2)单减
令k=0得g(x)在(-π/6,π/12)单增 在(π/12,π/3)单减
因为[0,π/4]属于[-π/6,π/3]
所以该区间符合题意
所以由图像知
当x=π/12时g(x)有最大值1/2
当x=π/4时g(x)有最小值-1/4