如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H, ①求证:△BCE≌△ACD; ②求证:CF=CH; ③判断△CFH的形状并说明理由.

问题描述:

如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,

①求证:△BCE≌△ACD;
②求证:CF=CH;
③判断△CFH的形状并说明理由.

①证明:∵∠BCA=∠DCE=60°,
∴∠BCE=∠ACD,
在△BCE和△ACD中,

BC=AC
∠BCE=∠ACD
CE=CD

∴△BCE≌△ACD(SAS);
②∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH,
在△BCF和△ACH中,
∠CBF=∠CAH
BC=AC
∠BCF=∠ACH

∴△BCF≌△ACH(ASA),
∴CF=CH;
③∵CF=CH,∠ACH=60°,
∴△CFH是等边三角形.