某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三
问题描述:
某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)
裁法一 | 裁法二 | 裁法三 | |
A型板材块数 | 1 | 2 | 0 |
B型板材块数 | 2 | m | n |
(1)上表中,m=______,n=______;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?
答
(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以无法裁出B型板,
按裁法三裁剪时,3块B型板材块的长为120cm,120<150,
而4块块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;
∴m=0,n=3;
(2)由题意得:共需用A型板材240块、B型板材180块,
又∵满足x+2y=240,2x+3z=180,
∴整理即可求出解析式为:y=120-
x,z=60-1 2
x;2 3
(3)由题意,得Q=x+y+z=x+120-
x+60-1 2
x.2 3
整理,得Q=180-
x.1 6
由题意,得
120−
x≥01 2 60−
x≥02 3
解得x≤90.
[注:事实上,0≤x≤90且x是6的整数倍]
由一次函数的性质可知,当x=90时,Q最小.
由(2)知,y=120-
x=120-1 2
×90=75,z=60-1 2
x=60-2 3
×90=0;2 3
故此时按三种裁法分别裁90张、75张、0张.