已知等差数列an的前n项和为sn,且s13>s6>s14,a2=24①求公差d的取值范围②问数列{sn}是否存在最大项

问题描述:

已知等差数列an的前n项和为sn,且s13>s6>s14,a2=24①求公差d的取值范围②问数列{sn}是否存在最大项

A(n)=A1+(n-1)d.
S(n)=na1+n(n-1)d/2.
A2=A1+d=24
因为S13>S6>S14 即13A1+78d>6A1+15d>14A1+91d
将A1=24-d代入上述不等式,
13(24-d) +78d>6(24-d)+15d>14(24-d)+91d
解得-3