A、B、C是球面上三点,已知弦(连接球面上两点的线段)AB=18cm,BC=24cm,AC=30cm,平面ABC与球心的距离恰好为球半径的一半,求球的表面积和体积.

问题描述:

A、B、C是球面上三点,已知弦(连接球面上两点的线段)AB=18cm,BC=24cm,AC=30cm,平面ABC与球心的距离恰好为球半径的一半,求球的表面积和体积.

球面上三点A、B、C,平面ABC与球面交于一个圆,三点A、B、C在这个圆上
∵AB=18,BC=24,AC=30,
∴AC2=AB2+BC2,∴AC为这个圆的直径,AC中点O′圆心
球心O到平面ABC的距离即OO′=球半径的一半=

1
2
R
△OO′A中,∠OO′A=90°,OO′=
1
2
R,AO′=
1
2
AC=30×
1
2
=15,OA=R
由勾股定理(
1
2
R)2+152=R2
3
4
R2=225
解得R=10
3

球的表面积S=4πR2=1200π(cm2);
和体积V=
4
3
πR3
4
3
×π× (10
3
)
3
=4000
3
π
(cm3).