已知y=f(x)是定义在R上的函数,而且对任意x∈R,有f(x+2)[1-f(x)]=f(x)+1成立 1、证明f(x)是周期函数

问题描述:

已知y=f(x)是定义在R上的函数,而且对任意x∈R,有f(x+2)[1-f(x)]=f(x)+1成立 1、证明f(x)是周期函数
2、若f(2)=-2,求f(2002)的值.

由题知必有f(x+2)=[1+f(x)]/[1-f(x)],所以f(x+4)={1+[1+f(x)]/[1-f(x)]}/{1-[1+f(x)]/[1-f(x)]}={2/[1-f(x)]}/{-2f(x)/[1-f(x)]}=-1/f(x),所以f(x+8)=-1/f(x+4)=f(x)因此f(x)是以8为周期的周期函数.f(2002)=f(2000+2...