求导:y=log2(x) * log4(x)的导数

问题描述:

求导:y=log2(x) * log4(x)的导数
y=log2(x) * log4(x)
其中2,4为底数,求导数,
2(Inr)/r(In2)(In4)是答案 请问为什么?

根据(lnx)'=1/x
而,log2(x)=lnx/(ln2)
就有:
y'=[log2(x)]'*log4(x)+log2(x)*[(log4(x)]'
=[1/(x*ln2)]*log4(x)+[1/(x*ln4)]*log2(x)
其实结果可以写为:
=[1/(x*ln2)]*lnx/(ln4)+[1/(x*ln4)]*lnx/(ln2)
=[(lnx)/x]*[1/(ln2*ln4)]