对数方程 log2^(x-1)=log4^x
问题描述:
对数方程 log2^(x-1)=log4^x
答
log2^(x-1)=log4^x
则 log2^(x-1)=log4^(x-1)²=log4^x
则(x-1)²=x
所以x²-3x+1=0
则x=(3士√5)/2log2^(x-1)=log4^(x-1)²这一步不太明白请教loga b=l oga² b²