已知f(x)是定义【-1,1】上的奇函数,且f(1)=1,若a、b属于【-1,1】,a+b不等于0时,有f(a)+f(b)/(a+b)>0.
问题描述:
已知f(x)是定义【-1,1】上的奇函数,且f(1)=1,若a、b属于【-1,1】,a+b不等于0时,有f(a)+f(b)/(a+b)>0.
1、判断函数f(x)在【-1,1】上是增函数,还是减函数,并证明你的结论.
2.解不等式f(x+(1/2))
答
解:
(1)设T=-b
则:b=-T
由于:
a+b≠0时,都有[f(a)+f(b)]/(a+b)>0
故:a-T≠0时,
有:[f(a)+f(-T)]/[a+(-T)]>0
又f(x)是奇函数
则有:f(-T)=-f(T)
则:[f(a)-f(T)]/[a-T]>0
即:[a-T]与[f(a)-f(T)]同号
即:a>T时,恒有f(a)>f(T)
a
(2)
由f(x+0.5)
-1〈=1/(x-1)x+1/2>1/(x-1)
∴-1
由以上知f(x)最大值为f(1)=1,
所以要f(x)≤m2-2pm+1对所有x∈〔-1,1〕,p∈〔-1,1〕(p是常数)恒成立,
只需1≤m2-2pm+1恒成立,
得实数m的取值范围为m≤0或m≥2p.