在⊙O中,已知⊙O的直径AB为2,弦AC长为根号三,弦AD长为根号二,则CD的平方等于多少

问题描述:

在⊙O中,已知⊙O的直径AB为2,弦AC长为根号三,弦AD长为根号二,则CD的平方等于多少

连结BC,BD因为AB是直径所以角ADB和角ACB都是直角AC = 根号(3),AB=2那么角CAB = 30°AD=根号(2),AB = 2那么角DAB=45°所以角DAC = 45 - 30 = 15度根据余弦定理cos角DAC = (AD^2 + AC^2 - DC^2)/(2*AD*AC)由此可以解出...应该是会有两个答案,C,D在AB同侧和C,D在AB异侧是不一样的两个分别是 5 - 2 * 根号(6) * cos15°和5 - 2 * 根号(6) * cos75°我没有去求cos15°和cos75°的值这个还要求一下这两个的值,才能化到最简