已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则有( ) A.e12+e22=2 B.e12+e22=4 C.1e21+1e22=2 D.1e
问题描述:
已知F1、F2是两个定点,点P是以F1和F2为公共焦点的椭圆和双曲线的一个交点,并且PF1⊥PF2,e1和e2分别是上述椭圆和双曲线的离心率,则有( )
A. e12+e22=2
B. e12+e22=4
C.
+1
e
21
=21
e
22
D.
+1
e
21
=4 1
e
22
答
由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上
由双曲线的定义|PF1|-|PF2|=2m ①
由椭圆的定义|PF1|+|PF2|=2a ②
又∠F1PF2=900,故|PF1|2+|PF2|2=4c2 ③
①2+②2得|PF1|2+|PF2|2=2a2+2m2④
将④代入③得a2+m2=2c2,即
+1
c2 a2
=2,即 1
c2 m2
+1
e
12
=21
e
22
故选C