用数学归纳法证明,若f(n)=1+1/2+1/3+…+1/n,则n+f(1)+f(2)+…+f(n-1)=n•f(n)(n≥2,且n∈N+).
问题描述:
用数学归纳法证明,若f(n)=1+
+1 2
+…+1 3
,则n+f(1)+f(2)+…+f(n-1)=n•f(n)(n≥2,且n∈N+). 1 n
答
(1)当n=2时,左边=2+f(1)=2+1=3,
右边=2•f(2)=2×(1+
)=3,左边=右边,等式成立.ks5u1 2
(2)假设n=k时等式成立,即
k+f(1)+f(2)+…+f(k-1)=kf(k).
由已知条件可得f(k+1)=f(k)+
,1 k+1
右边=(k+1)•f(k+1)(先写出右边,便于左边对照变形).
当n=k+1时,左边=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)
=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(凑成归纳假设)
=kf(k)+1+f(k)(利用假设)
=(k+1)•f(k)+1
=(k+1)•[f(k+1)-
]+11 k+1
=(k+1)•f(k+1)=右边.
∴当n=k+1时,等式也成立.
由(1)(2)可知,对一切n≥2的正整数等式都成立.