设函数f(x)=x-xlnx.证明f(x)在区间(0,1)上是增函数.
问题描述:
设函数f(x)=x-xlnx.证明f(x)在区间(0,1)上是增函数.
答
证明
f(x)的定义域为:x>0
∵f'(x)=1-lnx-1=-lnx
当f'(x)=-lnx>0时
f(x)是增函数
∴
-lnx>0
lnx∴0