题:将半径为R,中心角为a的扇形做成一个无底的圆锥体,试将这圆锥的体积V表示为a的函数.求:

问题描述:

题:将半径为R,中心角为a的扇形做成一个无底的圆锥体,试将这圆锥的体积V表示为a的函数.求:

设圆锥的底半径为r,注意到扇形的弧长等于圆锥的底面圆的周长,则有Ra=2πr,所以r=Ra/2π
圆锥的高为h=根号下(R^2-r^2),圆锥的体积V=(1/3)πr^2h,将以上代入化简即得.