已知函数f(x)=x^2+alnx.⑵若函数g(x)=f(x)+2/x在[1,4]上是减函数,求实数a的取值范

问题描述:

已知函数f(x)=x^2+alnx.⑵若函数g(x)=f(x)+2/x在[1,4]上是减函数,求实数a的取值范

用图像法解比较方便g(x)=f(x)+2/x=x^2+alnx+2/x对g(x)求导可得:g(x)'=2x+a/x-2/x^2要使g(x)在[1,4]上是减函数,则有:g(x)'≤0 [1,4] 恒成立,故有:2x+a/x-2/x^2≤02x≤2/x^2-a/x ------- 2x^3≤(2-ax)令:A=2x^3 B=...用a