f(x)满足af(x)+bf(1/x)=cx,求f(x),a.b.c均不等于0且a的平方-b的平方不等于0

问题描述:

f(x)满足af(x)+bf(1/x)=cx,求f(x),a.b.c均不等于0且a的平方-b的平方不等于0

af(x)+bf(1/x)=cx (1)
令x=1/x
af(1/x)+bf(x)=c/x (2)
(1)×a-(2)×b
(a²-b²)f(x)=acx-bc/x
f(x)=(acx-bc/x)/(a²-b²)