如图,在矩形ABCD中,点E在AD上,EC平分∠BED. (1)△BEC是否为等腰三角形?为什么? (2)已知AB=1,∠ABE=45°,求BC的长.
问题描述:
如图,在矩形ABCD中,点E在AD上,EC平分∠BED.
(1)△BEC是否为等腰三角形?为什么?
(2)已知AB=1,∠ABE=45°,求BC的长.
答
(1)△BEC是等腰三角形,
理由是:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,
即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=90°,
∵∠ABE=45°,
∴∠ABE=AEB=45°,
∴AB=AE=1,
由勾股定理得:BE=
=
12+12
,
2
即BC=BE=
.
2