椭圆x^2/a^+y^2/b^2=1(a>b>0)上存在一点P它到右焦点F及左准线l的距离相等,求椭圆离心率的取值范围

问题描述:

椭圆x^2/a^+y^2/b^2=1(a>b>0)上存在一点P它到右焦点F及左准线l的距离相等,求椭圆离心率的取值范围

设该点为P(m,n),则它到右焦点的距离为a-em,到左准线的距离为(a+em)/e,于是有 a-em=(a+em)/e,
m=a(e-1)/[e(e+1],
∵-a≤m≤a,∴-a≤a(e-1)/[e(e+1]≤a,-1≤(e-1)/[e(e+1]≤1,
解之得 √2-1≤e<1