设A是n阶可逆矩阵,将A的第i行和第j行对换后得到矩阵B,证明B可逆,并求AB ̄1

问题描述:

设A是n阶可逆矩阵,将A的第i行和第j行对换后得到矩阵B,证明B可逆,并求AB ̄1

1.A是n阶可逆矩阵,则A的行列式不等于零,A的第i行和第j行对换后得到矩阵B,矩阵B与矩阵A的行列式仅差一个符号,故矩阵B的行列式也不等于零,故矩阵B也可逆.2.矩阵B是由A的第i行和第j行对换得到,故B=I(i,j)A,其中I(i,j)是...