如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G (1)试判断线段BC、DE的数量关系,并说明理由; (2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例
问题描述:
如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
答
(1)BC、DE的数量关系是BC=DE.理由如下:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,又∵AB=AD,AC=AE,∴△ABC≌△ADE.(SAS)∴BC=DE.(2)线段FD是线段FG和FB的比例中项.理由如下:∵△ABC...