已知α,β为锐角,向量a=(cosα,sinα),向量b=(cosβ,sinβ)

问题描述:

已知α,β为锐角,向量a=(cosα,sinα),向量b=(cosβ,sinβ)
已知α,β为锐角,向量a=(cosα,sinα),b=(cosβ,sinβ),c=(1/2,-1/2)
①若ab=√2/2,ac=(√3-1)/4,求2β-α
②若a=b+c,求tanα的值

(1)a·b=cosαcosβ+sinαsinβ
=cos(α-β)=√2/2
a·c=1/2cosα-1/2sinα
=√2/2cos(α+π/4)=(√3-1)/4
故cos(α+π/4)=(√6-√2)/4>0
故sin(α+π/4)=(√6+√2)/4
故sinα=sin(α+π/4-π/4)
=sin(α+π/4)cosπ/4-cos(α+π/4)sinπ/4
=1/2
因0故π/4故-√2/2综合起来
0π/4即0又0故-π/2又cos(α-β)=√2/2
故α-β=-π/4
即β=α+π/4
故cos(2β-α)
=cos(2α+π/2-α)
=cos(α+π/2)
=-sinα
=-1/2
又-π/4故2β-α=5π/6
(2)因a=b+c
故有
cosα=cosβ+1/2 ①
sinα=sinβ-1/2 ②
上述两式消去β得:
(sinα+1/2)²+(cosα-1/2)²=1
展开,整理得:
sinα-cosα+1/2=0
故sinα=cosα-1/2
又sin²α+cos²α=1
解之得:
sinα=(√7-1)/4
cosα=(√7+1)/4

tanα=sinα/cosα
=(4-√7)/3