已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立. (1)求证:f(x)是周期函数; (2)已知f(3)=2,求f(2 004).
问题描述:
已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数;
(2)已知f(3)=2,求f(2 004).
答
(1)证明∵f(x)=f(x+1)+f(x-1)
∴f(x+1)=f(x)-f(x-1),
则f(x+2)=f[(x+1)+1]=f(x+1)-f(x)
=f(x)-f(x-1)-f(x)=-f(x-1).
∴f(x+3)=f[(x+1)+2]=-f[(x+1)-1]
=-f(x).
∴f(x+6)=f[(x+3)+3]=-f(x+3)=f(x).
∴f(x)是周期函数且6是它的一个周期.
(2)∵f(x)是周期函数且6是它的一个周期.
f(2004)=f(334×6)=f(0)=-f(3)=-2.