已知直线l经过抛物线y²=4x的焦点F,且与抛物线的交于A、B两点,求焦点弦AB的中点M的轨迹方程

问题描述:

已知直线l经过抛物线y²=4x的焦点F,且与抛物线的交于A、B两点,求焦点弦AB的中点M的轨迹方程
用韦达定理算出M点坐标之后就不知道怎么做了...

当直线斜率不存在时,L与X轴垂直,AB为通径,F(2,0)就是AB的中点;当直线斜率存在时,可设直线L的方程为y=k(x-2),代入抛物线y2=4x中,整理得:k2x2-(4k2+4)x+4k2=0①设A(x1,kx1-2k)B(x2,kx2-2k),由韦达定理得:x1+x2=...