已知2x-3y=0,3x-2y-6z=0,且xyz不等于0,求 x^2+y^2+z ———————— 2x^2+y^2-z^2
问题描述:
已知2x-3y=0,3x-2y-6z=0,且xyz不等于0,求 x^2+y^2+z ———————— 2x^2+y^2-z^2
答
由2x-3y+z=0 ==>2x-3y=-z ①3x-2y=6z ②把z看成常数 则由②×2-①×3可得 5y=15z ==>y=3z代入②可得3x-2×3z=6z ==>x=4z所以(x2+y2+z2)/(xy+yz+xz)=[(4z)2+(3z)2+z2]/(4z*3z+3z*z+4z*z)=(16z2+9z2+z2)/(12z2+3z2+4z2...-.-......可是答案不是这个啊......是13/20既然你知道答案,那就自己做吧...方法肯定是对的...