若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为()

问题描述:

若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为()

设|AB|=1,|CA|=2|CB|,则CA向量.CB向量的最大值2
CA • CB = |CA| |CB| cosX ( X 为向量 CA 和 CB 夹角)
根据余弦定理可得:
|AB|^2 = |CA|^2+ |CB|^2 - 2|CA||CB| COSX
1 = 4|CB|^2+|CB|^2 - 4 |CB|^2 COSX
1= 5|CB|^2 - 4 |CB|^2 COSX
|CB|^2 = 1/ (5-4COSX)
CA •CB = |CA| |CB| cosX = 2|CB|^2cosX
= 2COSX/((5-4COSX)
当COSX=1 ,2COSX/((5-4COSX)= 2 (最大值)