对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( ) A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1) C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1)
问题描述:
对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( )
A. f(0)+f(2)<2f(1)
B. f(0)+f(2)≤2f(1)
C. f(0)+f(2)≥2f(1)
D. f(0)+f(2)>2f(1)
答
依题意,当x≥1时,f′(x)≥0,函数f(x)在(1,+∞)上是增函数;
当x<1时,f′(x)≤0,f(x)在(-∞,1)上是减函数,
故当x=1时f(x)取得极小值也为最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).
故选C.