设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0时,0
问题描述:
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>
设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),
且当x>0时,0
答
(1)令m=n=0 那么有f(0)=f(0)^2
则f(0)=0或1
若f(0)=0 那么令m=0 n>0那么f(m+n)=f(0+n)=f(0)f(n)=0
这样对于任何n>0都有f(n)=0 这与条件x>0时0
令n=-m 那么有f(m+n)=f(0)=f(m)f(-m)=1
所以f(m)和f(-m)互为倒数
设m属于0到正无穷 那么f(m)就在0到1之间
所以其倒数f(-m)就在1到正无穷上 所以当x1
(2)设n>0 那么对于对于实数m有f(m+n)=f(m)f(n)
因为n>0 所以f(n)在0到1之间
又因为函数f(x)在R上恒大于0 所以f(m+n)
所以对于任意实数x2>x1 都有f(x1)>f(x2)
所以函数f(x)在R上单调递减