抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程,
问题描述:
抛物线X^2=4y 与过点M(0,2)的直线L相交于A.B两点,O为坐标原点,若直线OA与OB的斜率之和为2,求直线方程,
答
设A(x1,x1^2/4)、B(x2,x2^2/4),直线方程为y=kx+2代入x^2=4y得:x^2-4kx-8=0 x1+x2=4k
(x1^2/4)/x1+(x2^2/4)/x2=x1/4-x2/4=(x1+x2)/4=k=2
直线方程为:y=2x+2