已知椭圆c:x2 a2+y2 b2 =1的离心率为3分之根号6,F为椭圆在x轴正半轴上的焦点,M,N两点在椭圆c上,
问题描述:
已知椭圆c:x2 a2+y2 b2 =1的离心率为3分之根号6,F为椭圆在x轴正半轴上的焦点,M,N两点在椭圆c上,
且向量MF=λ向量FN(λ》0 ),定点A(-4,0)
求证当λ=1时向量MN垂直于向量AF;
若当λ=1时有向量AM乘于向量AN=106/3,求椭圆c的方程
在2的条件下,当M,N,两点在椭圆c运动时,试判断向量AM乘于向量AN乘于tan∠MAN 是否有最大值,若存在求出最大值,并求出这时M,N两点所在直线方程,若不存在,给出理由
答