向量a=sin^2(pie+2x)/4,cosx+sinx,b=(4sinx,cosx-sinx)
问题描述:
向量a=sin^2(pie+2x)/4,cosx+sinx,b=(4sinx,cosx-sinx)
fx=a*b
求fx解析式,
fx与x轴y轴(君正半轴),围成的图形面积
答
f(x)=sin^2[(π+2x)/4]*4sinx+(cosx+xinx)(cosx-sinx)
=4sinx*1/2(1-cos[(π+2x)/2])+cos(2x)
=2sinx(1-sin(-x))+cos2x
=2sinx+2sin^2x+cos^2x-sin^2x
=2sinx+1