三角形ABC中,AB=AC,角A=40度,P为三角形ABC内一点,若角PBC=角PCA,则角BPC等于

问题描述:

三角形ABC中,AB=AC,角A=40度,P为三角形ABC内一点,若角PBC=角PCA,则角BPC等于

∠ACP+∠PCB=∠ACB=∠ABC
AB=AC = = ∠A=40 可算出∠ACB=70(这个不用说了吧)
∠PBC=∠PCA
所以∠PBC+∠PCB=70
∴∠BPC=180-70=110°