如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是( ) A.10 B.8 C.6 D.4
问题描述:
如图,一束光线从y轴的点A(0,2)出发,经过x轴上的点C反射后经过点B(6,6),则光线从点A到点B所经过的路程是( )
A. 10
B. 8
C. 6
D. 4
答
法1:B点作x轴的垂线与x轴相交于点D,则BD⊥CD,
∵A点经过点C反射后经过B点,
∴∠OCA=∠DCB,
∴△OAC∽△DBC,
又∵BD⊥CD,AO⊥OC,根据勾股定理得出
=OA DB
=AC BC
,OA=2,BD=6,OC CD
=OA DB
=AC BC
=OC CD
1 3
∵OD=OC+CD=6
∴OC=6×
=1.5.1 4
AC=
=
OA2+OC2
=2.5,
22+1.52
BC=2.5×3=7.5,
AC+BC=2.5+7.5=10;
法2:延长BC,与y轴交于E点,过B作BF⊥y轴,交y轴于F点,
由题意得到A与E关于x轴对称,可得E(0,-2),AC=CE,
∴BF=6,EF=OE+OF=6+2=8,
在Rt△BEF中,根据勾股定理得:BE=
=10,
BF2+EF2
则光线从A到B所经过的路程为AC+CB=EC+CB=BE=10.
故选A