求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程.
问题描述:
求圆,椭圆,抛物线,双曲线的标准方程,及其参数方程.
如题
答
圆与椭圆均为封闭曲线,
二者标准方程为x^2/a^2+y^2/b^2=1
对于圆:a=b>0
对于椭圆a^2=b^2+c^2 (c为焦半距)a>b>0,a>c>0.b,c大小关系不确定.
双曲线标准方程为x^2/a^2-y^2/b^2=1
满足a^2+b^2=c^2 (c为焦半距)c>a>0,c>b>0.a,b大小关系不确定
抛物线标准方程为四类:y^2=2px (p>0)(焦点在x轴正半轴上)
y^2=-2px(p>0)(焦点在x轴负半轴上)
x^2=2py(p>0)(焦点在y轴正半轴上)
x^2=-2py(p>0)(焦点在y轴负半轴上)
参数方程等会上
椭圆
X=a cosx
y=b sinx
双曲线:
x = a*secθ
y = b*tgθ
抛物线:
x = 2p*t^2
y = 2p*t
椭圆可用三角函数来建立参数方程
椭圆:x^2/a^2 +y^2/b^2=1
椭圆上的点可以设为(a·cosθ,b·sinθ)
相同的有:双曲线:x^2/a^2 - y^2/b^2=1
双曲线上的点可以设为(a·secθ,b·tanθ)
因为 (secθ)^2-(tanθ)^2=1
抛物线:y^2=2p·x
则抛物线上的点可设为 (2p·t^2,2p·t)
相应的,如果抛物线是:x^2=2p·y
则抛物线上的点可设为 (2p·t,2p·t^2)
你的名字我喜欢