抛物线x^2=y到直线2x-y-4=0的最短距离为?
问题描述:
抛物线x^2=y到直线2x-y-4=0的最短距离为?
答案是(3根号5)/5,
答
方法一
设直线 2x-y+C=0 与抛物线相切,则切点到直线 2x-y-4=0 的距离也就是两平行线间的距离为所求的最短距离.
将y=2x+C 代入抛物线方程为 x^2-2x-C=0 ,
令 判别式=4+4C=0 得 C=-1 ,
因此所求的最短距离=|-1+4|/√(4+1)=3√5/5 .
方法二
设P(x,x^2)是抛物线线上任一点,P到直线 2x-y-4=0 的距离为
d=|2x-x^2-4|/√5=|(x-1)^2+3|/√5 ,
由于 (x-1)^2+3>=3 ,所以,当 x=1 时,所求距离最短,为 3/√5=3√5/5 .