(根号x- (1/x^2) )^n 展开式中第五项与第三项的二项式系数之比为14:3 ,求展开式的常数项

问题描述:

(根号x- (1/x^2) )^n 展开式中第五项与第三项的二项式系数之比为14:3 ,求展开式的常数项

第五项与第三项的二项式系数之比为14:3 即C(n,4):C(n,2)=14:3∴3*C(n,4)=14*C(n,2)∴3*n(n-1)(n-2)(n-3)/(4*3*2*1)=14n(n-1)/(2*1)∴(n-2)(n-3)=8×7∴n=10二项式为(√x-1/x²)^10通项Tr+1=C(10,r)(√x)^(10-r)(...