已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.
问题描述:
已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.
答
CE是AB边上的中线.
理由:∵∠ACB=90°,∠ACD:∠BCD=1:2,
∴∠ACD=30°,∠BCD=60°,
∵CE平分∠BCD,
∴∠DCE=∠BCE=30°,
∵CD⊥AB,∠ACD=30°,∠BCD=60°,
∴∠A=60°,∠B=30°,
∴∠A=∠ACD+∠DCE=∠ACE,∠B=∠BCE,
∴AE=EC,BE=EC,
∴AE=BE,
所以,CE为AB边上的中线.