已知tana=√3(1+m)且√3(tana·tanb+m)+tanb=0 a b为锐角 a+b的值为?

问题描述:

已知tana=√3(1+m)且√3(tana·tanb+m)+tanb=0 a b为锐角 a+b的值为?

tana=√3(1+m)
tanb=-√3(tana·tanb+m)
tana+tanb =√3(1+m)-√3(tana·tanb+m)
= √3 (1 - tana·tanb)
tan(a+b) = (tana+tanb)/(1-tana*tanb) = √3
a b为锐角, a+b = 60°