设函数f(x)在【0,2】上连续,令t=2x.则∫(0,1)f(2x)dx等于?

问题描述:

设函数f(x)在【0,2】上连续,令t=2x.则∫(0,1)f(2x)dx等于?

t=2x
dt= 2dx
x=0,t=0
x=1.t=2
∫(0->1)f(2x) dx
= (1/2) ∫(0->2)f(t) dt