已知abc不等于0且a+b+c=0,则a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)的值为?
问题描述:
已知abc不等于0且a+b+c=0,则a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)的值为?
已知abc不等于0且a+b+c=0,则a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)的值为?
答
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)
=(a+b)/c+(b+c)/a+(c+a)/b
=(-c)/c+(-a)/a+(-b)/b
=-3