判定圆x^2+y^2-6x+4y+12=0与圆x^2+y^2-14x-12y+14=0是否相切?

问题描述:

判定圆x^2+y^2-6x+4y+12=0与圆x^2+y^2-14x-12y+14=0是否相切?

X2+Y2-6X+4Y+12=0,
(x-3)²+(y+2)²=1²圆心是(3,-2),半径是1
X2+Y2-14X-2Y+14=0
(x-7)²+(y-1)²=6²圆心是(7,1),半径是6
圆心距为5,
所以两圆内切!