数列{an}的前n项和为Sn=nPan(n属于N+),且a1不等于a2(1)求常数P的值(2)证明:数列{an}是等差数列

问题描述:

数列{an}的前n项和为Sn=nPan(n属于N+),且a1不等于a2(1)求常数P的值(2)证明:数列{an}是等差数列
an求出来不是等差数列.p也没有具体的值 只是不等于1,

选B.
这是一个定理,如果一个数列的前n项和Sn=k*q^n,则这个数列是等比数列;如果Sn=an^2-b,则这个数列是等差数列