已知函数f=lg

问题描述:

已知函数f=lg
若g是以2为周期的偶函数,且当0≤x≤1时,有g=f,求函数y=g(x∈【1,2】)的反函数

当0≤x≤1时,g=f=lg(x+1)
设1≤x≤2,那么-1≤x-2≤0,0≤2-x≤1
∵g是以2为周期的周期函数
∴g(x)=g(x-2)
∵g(x)是偶函数
∴g(x-2)=g(2-x)=lg[(2-x)+1]=lg(3-x)
即当1≤x≤2时,g(x)=lg(3-x)
∵ 1≤ 3-x≤2 ,∴0≤lg(3-x)≤lg2
由y=g(x)=lg(3-x) (1≤x≤2,0≤y≤lg2)
得3-x=10^y,
x=3-10^y
∴g(x)在[1,2]上的反函数为
g^(-1)(x)=3-10^x (0≤x≤lg2)