如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E. (1)求证:直线EF是⊙O的切线; (2)求sin∠E的值.
问题描述:
如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.
答
(1)证明:方法1:连接OD、CD.
∵BC是直径,
∴CD⊥AB.
∵AC=BC.
∴D是AB的中点.
∵O为CB的中点,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥EF.
∴EF是O的切线.
方法2:∵AC=BC,
∴∠A=∠ABC,
∵OB=OD,
∴∠DBO=∠BDO,
∵∠A+∠ADF=90°
∴∠EDB+∠BDO=∠A+∠ADF=90°.
即∠EDO=90°,
∴OD⊥ED
∴EF是O的切线.
(2)连BG.
∵BC是直径,
∴∠BDC=90°.
∴CD=
=
AC2−AD2
=8.
102−62
∵AB•CD=2S△ABC=AC•BG,
∴BG=
=AB•CD AC
=12×8 10
.48 5
∴CG=
=
BC2−BG2
=
102−(
)2
48 5
.14 5
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴sin∠E=sin∠CBG=
=CG BC
=
14 5 10
.7 25