如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.
问题描述:
如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.
答
证明:∵四边形ABCD是矩形,
∴AB=CD,
又∵DE=DC,
∴AB=DE,
∵AD∥BC,
∴∠BFA=∠DAE,
∴在△ABF和△DEA中
,
∠BFA=∠DAE ∠B=∠DEA=90° AB=DE
∴△ABF≌△DEA,
∴AE=BF.