经过双曲线x^2-y^2/3=1的左焦点F1作倾斜角

问题描述:

经过双曲线x^2-y^2/3=1的左焦点F1作倾斜角
为pai/6的弦AB,求:
1.AB距离
2.三角形F2AB的周长

双曲线x²-y²/3=1--->a=1,b=√3,c=√(1+3)=2
AB方程:y=(√3/3)(x+2)--->x=√3y-2
与双曲线联立:(√3y-2)²-y²/3=1--->8y²-12√3y+9=0
--->|yA-yB|²=|yA+yB|²-4yAyB=(12√3/8)²-4(9/8)=9/4
--->|yA-yB|=3/2
--->|AB|=|yA-yB|/sin30°=3
|AF2|=2a+|AF1|,|BF2|=2a+|BF1|
△F2AB的周长 =|AF2|+|BF2|+|AB| = 4a+2|AB| = 10